PERSPECTIVE
1665 Cardiovascular Risks with Azithromycin and Other Antibacterial Drugs
A.D. Mosholder and Others

1668 Discrimination at the Doctor's Office
H.F. Lynch

1670 Eastern Equine Encephalitis Virus — Old Enemy, New Threat
P.M. Armstrong and T.G. Andreadis

ORIGINAL ARTICLES
1675 Surgery versus Physical Therapy for a Meniscal Tear and Osteoarthritis
J.N. Katz and Others

1685 Treatment of HCV Infection by Targeting MicroRNA
H.L.A. Janssen and Others

1695 Penicillin to Prevent Recurrent Leg Cellulitis
K.S. Thomas and Others

1704 Use of Azithromycin and Death from Cardiovascular Causes
H. Svanström, B. Pasternak, and A. Hvistendahl

SPECIAL ARTICLE
1713 The Oregon Experiment — Effects of Medicaid on Clinical Outcomes
K. Baicker and Others

REVIEW ARTICLE
1723 Global Health: Injuries
R. Norton and O. Kobusingye

IMAGES IN CLINICAL MEDICINE
1731 Pain in the Thumb Related to Disease in the Lung
C.A. Wijbrandts and D. van Schaardenburg

223 Elephantiasis Neuromatosa
H.-Y. Chiu and Y.-H. Liao

CLINICAL PROBLEM-SOLVING
1732 In the Thick of It
D.A. Rao and Others

EDITORIALS
1740 Meniscectomy in Patients with Knee Osteoarthritis and a Meniscal Tear?
R. Buchbinder

1741 Micromanaging Hepatitis C Virus
J. Lieberman and P. Sarnow

1744 Protecting Finances and Improving Access to Care with Medicaid
R. Kronick and A.B. Bindman

CLINICAL IMPLICATIONS OF BASIC RESEARCH
1746 Kwashiorkor and the Gut Microbiota
W.S. Garrett

1748 CORRESPONDENCE
1757 Intracranial-Pressure Monitoring in Traumatic Brain Injury
1757 Smoking-Related Mortality in the United States
1757 Proteotoxicity and Cardiac Dysfunction
1757 Hepatocellular Carcinoma after the Fontan Procedure

1757 CORRECTION
1757 NOTICES
1759 CONTINUING MEDICAL EDUCATION
Since publication of their article, the authors report no further potential conflict of interest.

DOI: 10.1056/NEJMct01076

Smoking-Related Mortality in the United States

TO THE EDITOR: The article by Thun et al. (Jan. 13 issue) concluded that the risk of death from cigarette smoking continues to increase. Some issues, however, remain unclear. First, the effect of other risk factors that act in synergy with cigarette smoking has not been adequately weighted. Air pollution, for instance, may have finally contributed to bias in smoking-related outcomes, especially in relation to chronic obstructive pulmonary disease (COPD) and all-cause mortality. It is also noteworthy that the makeup of cigarettes and the composition of cigarette smoke have changed remarkably in the past 50 years, such that a direct comparison of clinical outcomes may be misleading. In the United States, in particular, the sales-weighted average yields of "tar" (the residue produced by the burning of the cigarette) and nicotine have both declined from a high of 38 mg of tar and 2.7 mg of nicotine per cigarette in the 1950s to 12 mg and 0.95 mg, respectively, in the 1990s. The amounts and types of other harmful constituents of smoke have also changed since the 1950s.

Giuseppe Lippi, M.D.
Academic Hospital of Parma
Parma, Italy
ulippi@tin.it

Carmilla Mattiuzzi, M.D.
General Hospital of Trento
Trento, Italy

No potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMct1302783

TO THE EDITOR: In his editorial on the article by Thun et al., Schroeder notes that as smoking becomes less popular, those who continue to smoke will be increasingly marginalized. This is particularly true for patients with psychiatric disorders, who already undergo the stigma and marginalization associated with mental illness; these patients also have the highest prevalence of smoking among all patient subgroups. Approximately two thirds of patients with schizophrenia and half of patients with bipolar disorder smoke, although, as with smokers who do not have a psychiatric disorder, most of them want to quit smoking. Unfortunately, misperceptions about mental illness and tobacco use often prevent clinicians from offering evidence-based treatment for tobacco dependence to patients with psychiatric disorders, despite the fact that life expectancy for these patients is approximately 10 years lower than that for the general population because of premature deaths from medical illnesses that are largely attributable to tobacco use. The isolation, coexisting conditions, and lower life expectancy of persons with mental illness will not be lessened unless smoking cessation is made a top priority for this vulnerable population.

Joseph M. Cerimele, M.D.
Abigail C. Halperin, M.D., M.P.H.
University of Washington School of Medicine
Seattle, WA
ccerimele@uw.edu

No potential conflict of interest relevant to this letter was reported.

DOI:10.1056/NEJMci3102783

TO THE EDITOR: Surely Schroeder intended to attribute his pungent comment that "women who smoke like men die like men who smoke" to Joseph A. Califano, Jr., who said it on January 11, 1979, while serving as Secretary of the Department of Health, Education, and Welfare (HEW). Califano's vigorous stance against smoking is generally considered to have been a major reason for his being fired from his HEW post that year by President Jimmy Carter, so his blunt prophetic warning that the mortality from lung cancer among women who smoke would soon catch up with that of men who smoke has great historical significance.

Alan Blum, M.D.
University of Alabama School of Medicine
Tuscaloosa, AL
ablum@chohs.ua.edu

No potential conflict of interest relevant to this letter was reported.

DOI:10.1056/NEJMci3102783

THE AUTHOR'S REPLY: We thank Lippi and Mattiuzzi for their letter regarding the continuing increase in mortality from lung cancer and COPD that we observed among contemporary cigarette smokers in the United States. The increased risks cannot be explained by synergy between air pollution and smoking, since ambient levels of all so-called criteria, or principal, air pollutants established by the Environmental Protection Agency (particle pollution [PM10], ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and lead) have decreased in the United States since the 1960s. The reductions in the tar and nicotine yield of cigarettes, as measured by machines that performed the cigarette smoking, obviously failed to prevent the continuing increase in risk to smokers. Although the main determinant of the increase was the generational shift toward persistent smoking beginning in adolescence, this trend was compounded by changes in cigarette design that increased exposure to tobacco-specific nitrosamines and promoted deeper inhalation of more dilute smoke, even though the cigarettes were marketed as being safer. These factors do not constitute biases in the usual sense. Rather, they represent at best imprudent modifications of exposure and missed opportunities to regulate the manufacture and marketing of cigarettes effectively.

Michael J. Thun, M.D.
American Cancer Society
Atlanta, GA

Alan D. Lopez, Ph.D.
University of Queensland
Brisbane, QLD, Australia

Patricia Hartge, Sc.D.
National Cancer Institute
Bethesda, MD

Since publication of this article, the authors report no further potential conflict of interest.

DOI:10.1056/NEJMci3102783

THE EDITORIALIST REPLIES: I am on record as agreeing fully with the sentiments expressed by Cerimele and Halperin. In fact, our Smoking Cessation Leadership Center at the University of California, San Francisco, has been working in partnership with many groups, including the federal Substance Abuse and Mental Health Services Administration, to try to do just what they recommend: mainstream smoking-cessation programs among patients with mental illnesses and substance abuse disorders.

Regarding Blum's comments: I did not reference former Secretary Califano because I was not aware that he had originated the phrase in question. Both Califano and the recently deceased C. Everett Koop, in his role as Surgeon General, courageously used their positions in the federal government to advocate for tobacco control at a
time when it was not politically safe to do so. They are true public health heroes.

Steven Schroeder, M.D.
University of California, San Francisco
San Francisco, CA

Since publication of his article, the author reports no further potential conflict of interest.

DOI: 10.1056/NEJMci1302783

Proteotoxicity and Cardiac Dysfunction

TO THE EDITOR: Willis and Patterson (Jan. 31 issue)1 show that researchers can learn a great deal from the presence of a given disease pathway in seemingly unrelated diseases. In Parkinson’s disease, as in many other neurodegenerative diseases, dysfunctional protein folding and degradation are key steps in a pathway that leads to protein accumulation, the formation of oligomers, and the spread of neurodegeneration.2-4 We would like to add several points.

First, the authors refer mainly to macroautophagy when discussing autophagy, but there are other forms of autophagy, such as chaperone-mediated autophagy, that appear to play a particular role in the degradation of aggregate-prone protein species (e.g., α-synuclein in Parkinson’s disease).2 Second, mitochondrial integrity is critical in both heart and brain metabolism, and there is evidence that autophagy (or mitophagy) plays a role in impaired mitochondrial turnover in both neurodegenerative disease2 and heart disease.5 Third, Willis and Patterson highlight the detrimental consequences of a failure of autophagy, but with regard to evidence of maladaptive (overactive) autophagy in heart disease and neurodegeneration,3 they could have commented on the dichotomous role of autophagy and the implications of modulating it for use as a novel therapeutic strategy.

Darius Ebrahimi-Fakhari, M.D.
Ruprecht-Karls-Universität Heidelberg
Heidelberg, Germany

Ebrahimif@stud.uni-heidelberg.de

Pamela J. McLean, Ph.D.
Mayo Clinic Florida
Jacksonville, FL

Lara Wahlster, M.D.
Ruprecht-Karls-Universität Heidelberg
Heidelberg, Germany

No potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMci1302511

TO THE EDITOR: Willis and Patterson discuss the direct role that misfolded proteins play in the pathogenesis of heart disease. The misfolding of cardiac proteins may also shed light on the growing evidence that autoantibodies targeting the heart can be associated with dilated cardiomyopathy and may contribute to the progression of cardiac dysfunction.3 Studies on autoimmune disorders suggest that misfolded proteins can trigger autoimmunity through various mechanisms.2,3 They can act as autoantigens and disrupt immune tolerance to native proteins; cause apoptosis, thus favoring the exposure of autoantigens; and induce the expression of heat-shock proteins (HSPs).2,3 Chaperones in the HSP family are highly conserved immunogenic molecules4 that send stimulatory signals to dendritic cells.3 It has been proposed that antibodies against HSPs impair their function and hamper protein refolding.3 A recurring anti-HSP60 antibody has been detected in patients with dilated cardiomyopathy.3

Further studies are required to clarify whether there is a link between protein misfolding and